Abstract
We draw our attention on the unit sphere in three dimensional Euclidean space. A set X_N of N points on the unit sphere is a spherical t-design if the average value of any polynomial of degree at most t over X_N is equal to the average value of the polynomial over the sphere. The last forty years have witnessed prosperous developments in theory and applications of spherical t-designs. Let integer $t > 0$ be given. The most important question is how to construct a spherical t-design by minimal N. It is commonly conjectured that $N = \frac{1}{2} t^2 + o(t^2)$ point exists, but there is no proof. In this talk, we firstly review recent results on numerical construction of spherical t-designs by various of methods: nonlinear equations/interval analysis, variational characterization, nonlinear least squares, optimization on Riemanninan manifolds. Consequently, numerical approximation to singular integral over the sphere by using well-conditioned spherical t-designs are also discussed.

Date: Tuesday, 26 September 2017
Time: 2:00p.m. – 3:00p.m.
Venue: Room 5506, Academic Building (near Lifts 25 & 26), HKUST
All are welcome!