The Hong Kong University of Science and Technology
Department of Mathematics
Seminar on Pure Mathematics

Characterization of Intersecting Families of Maximum Size in $PSL(2, q)$

By

Prof. Qing Xiang
University of Delaware
(Joint work with Ling Long, Rafael Plaza, and Peter Sin)

Abstract

The Erdős-Ko-Rado (EKR) theorem is a classical result in extremal set theory. It states that when $k < n/2$, any family of k-subsets of an n-set X, with the property that any two subsets in the family have nonempty intersection, has size at most $\binom{n-1}{k-1}$; equality holds if and only if the family consists of all k-subsets of X containing a fixed point.

Here we consider EKR type problems for permutation groups. In particular, we focus on the action of the 2-dimensional projective special linear group $PSL(2, q)$ on the projective line $PG(1, q)$ over the finite field \mathbb{F}_q, where q is an odd prime power. A subset S of $PSL(2, q)$ is said to be an intersecting family if for any $g_1, g_2 \in S$, there exists an element $x \in PG(1, q)$ such that $x^{g_1} = x^{g_2}$. It is known that the maximum size of an intersecting family in $PSL(2, q)$ is $q(q - 1)/2$. We prove that all intersecting families of maximum size are cosets of point stabilizers for all odd prime powers $q > 3$.

Date: Wednesday, 11 April 2018
Time: 5:00p.m. - 6:00p.m.
Venue: Room 5510, Academic Building
(near Lifts 25 & 26), HKUST
All are welcome!